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Abstract

In this paper, we present an efficient multi-class
heterogeneous domain adaptation method, where
data from source and target domains are repre-
sented by heterogeneous features of different di-
mensions. Specifically, we propose to recon-
struct a sparse feature transformation matrix to
map the weight vector of classifiers learned from
the source domain to the target domain. We cast
this learning task as a compressed sensing prob-
lem, where each binary classifier induced from
multiple classes can be deemed as a measure-
ment sensor. Based on the compressive sensing
theory, the estimation error of the transformation
matrix decreases with the increasing number of
classifiers. Therefore, to guarantee reconstruc-
tion performance, we construct sufficiently many
binary classifiers based on the error correcting
output coding. Extensive experiments are con-
ducted on both a toy dataset and three real-world
datasets to verify the superiority of our proposed
method over existing state-of-the-art HDA meth-
ods in terms of prediction accuracy.

1 Introduction

In many real-world problems, it is often expensive to col-
lect labeled data for training predictive models. To ad-
dress this issue, transfer learning or domain adaptation
(DA) [25], which aims to adapt a model from an auxil-
iary domain (i.e., a source domain) to a domain of in-
terest (i.e., a target domain) with little or without addi-
tional human supervision, has attracted growing attention
in recent years. Towards this goal, a lot of DA methods
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have been successfully applied to various real-world appli-
cations, such as WiFi-based localization [23, 24], image
classification [35], video concept detection [14], sentiment
analysis [5, 28], coreference resolution [32], vehicle rout-
ing [18], game playing [4], etc.

In general, most of the existing domain adaptation meth-
ods assume that data of different domains are of the
same dimensionality or represented by the same feature s-
pace [25, 35]. However, this assumption may not hold for
many applications. Taking cross-language document clas-
sification as an example, documents in English do not share
the same feature representation with those in German due
to different vocabularies. Another example comes from im-
age classification, where two images of the same object
with different illuminations and resolutions may be of d-
ifferent dimensions of features.

Recently, more and more attention has been shifted to
domain adaptation across heterogeneous feature spaces,
which is referred to as heterogeneous domain adaptation
(HDA) [26, 35]. To address this problem, most existing H-
DA methods aim to learn a common feature representation
such that both source and target domain data can be repre-
sented by homogeneous features. Formally, one can learn
two feature mappings P and Q to transform the source do-
main data XS and target domain data XT to a new latent
feature space such that the difference between the mapped
domain data PXS and QXT is reduced [29, 26, 31, 15].
Alternatively, one can also learn an asymmetric transfor-
mation G to map data from one domain to another so that
either the difference between GXS and XT can be mini-
mized or the alignment between GXS and XT can be max-
imized [8, 22]. Though these methods have shown promis-
ing results, they still suffer from the following three major
limitations.

Firstly, since the size of the feature mapping G scales with
the product of the dimensions of source and target domain-
s, the computational cost to estimate G is extremely high,
especially for high-dimensional source and target domain
data. To address the computational issue, Duan et al. [15]
and Kulis et al. [22] proposed kernelized versions of the

1095



Heterogeneous Domain Adaptation for Multiple Classes

CCAT

C15

ECAT

E21

GCAT

M11

Sano

…

...

Bueno

…

Ventajoso

CCAT

C15

ECAT

E21

GCAT

M11

Great

Good

...

Wholesome

...

Healthy

0.5, 0.3, 0…,0,0.1, 0,…, 0.1

…

…

Sano=0.5×Great+0.3×Good

+0.1×Wholesome+0.1×Healthy

Classes of 
Source Domain

Classes of 
Source Domain

Target Domain
(Spanish Doeuments)

Feature Transformation Matrix G Source Domain
(English Documents)

Figure 1: Illustration of a sparse feature representation matrix.

feature-mapping learning methods, respectively. However,
these kernelized methods still suffer from high computa-
tional cost on large-scale data in terms of data volume.

Secondly, most existing methods tend to recover a dense
feature mapping, which, however, is not feasible without
enough constraints or information. Besides, in many real-
world scenarios, a dense feature mapping is not necessary.

Thirdly, most existing HDA methods simply adopt one-vs-
rest strategy to learn multiple binary classifiers indepen-
dently to address the multi-class issue [8, 31, 15]. In this
way, the underlying structure among multiple classes fails
to be fully explored. Consequently, the one-vs-rest scheme
may limit the ability of knowledge transfer in a multi-class
classification manner.

1.1 Encoding Sparsity and Class-Invariance in
Learning Feature Mapping

In this paper, we propose to overcome the above limitations
for HDA under two assumptions:

1. Sparse feature representation: the feature mapping G
between the two domains is highly sparse. In other
words, each source domain feature can be represented
by only a small subset of the target domain features.

2. Class-invariant transformation: all the classes share
the same feature mapping G. Different from [15], we
do not aim to learn class-specific feature mappings.

It can be shown that the above two assumptions are satis-
fied in many real-world HDA problems. Firstly, the sparsi-
ty of a feature mapping across domains means that a feature
in one domain can be represented by only several features
in another domain, which is also known as the feature s-
election problem. To demonstrate this fact, we use multi-
language (e.g., English v.s. Spanish) text classification as a
motivating example. Typically, the word “Sano” in Span-
ish has a similar meaning to the words “Great”, “Good”,
“Wholesome”, and “healthy”, but not all of the words in
English. Therefore, by assuming that the feature mapping

across domains is linear, a feature or word in the Spanish
domain can be represented by a linear combination of sev-
eral features or words in the English domain only. As illus-
trated in Figure 1, the sparse matrix G denotes the feature
mapping from the English domain to the Spanish domain.
Based on the sparse matrix G, the word “Sano” in Spanish
can be represented sparsely by only four words in Span-
ish as “Sano” = 0.5 × “Great” + 0.3 × “Good” + 0.1 ×
“Wholesome” + 0.1 × “Healthy”. Such sparsity, which
can also facilitate a significant reduction in computational
cost on very high-dimensional data, has not been explored
in previous HDA methods. Moreover, the feature mapping
of the word “Sano” is invariant to different classes. To p-
reserve such class-invariance, the feature mapping across
domains is learned underlying all the classes, which shares
a similar spirit of multi-task feature learning [2].

1.2 Our Contributions

Based on these two assumptions, we propose to learn a s-
parse and class-invariant feature mapping for multi-class
HDA. Specifically, to estimate such a feature mapping, we
leverage the weight vectors of the binary classifiers learned
in the source and target domains. As will be shown later,
this learning task can be cast as a compressed sensing (CS)
problem [13, 6]. In summary, the main contributions of this
paper are two-folds:

1. We propose a sparse heterogeneous feature repre-
sentation (SHFR) algorithm to learn a sparse feature
transformation for HDA by fully exploring the shared
underlying structures among multiple classes between
domains.

2. Based on the CS theory, it can be shown that the sparse
feature mapping can be learned precisely if and only if
a sufficient number of classifiers are provided. There-
fore, we further propose to use the ECOC scheme to
generate a sufficient number of binary classifiers from
a set of classes.

The remainder of this paper is organized as follows. In Sec-
tion 2, we briefly review some related work. In Section 3,
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we firstly cast the proposed learning problem of feature
mapping as a compressed sensing problem, and present the
details of the proposed SHFR. In Section 4, we conduct a
series of experiments on both a toy dataset and three real-
world datasets to demonstrate the effectiveness of SHFR.
Finally, we conclude this paper and point out some future
directions in Section 5.

2 Related Work

In general, approaches to HDA can be classified into two
categories. The first group is to learn a pair of feature map-
pings to transform source and target domain heterogeneous
data to a common latent space respectively. For example,
Shi et al. [29] proposed a Heterogeneous Spectral Mapping
(HeMap) method to learn the mappings based on spectral
embedding without using any label information. Wang and
Mahadevan [31] proposed a manifold alignment method,
which is denoted by DAMA in the sequel, to align het-
erogeneous features in a latent space based on manifold
regularization. However, DAMA only works on the data
that have strong manifold structures, which limits its trans-
ferability on those data where the manifold assumption
does not hold. More recently, Duan et al. [15] proposed
a Heterogeneous Feature Augmentation (HFA) method to
augment homogeneous common features that learned by a
maximum-margin approach from both the source and target
domains. However, the proposed model requires to solve
an expensive semidefinite program (SDP) problem.

Another group of HDA algorithms is to learn a feature map-
ping to transform heterogeneous data from one domain to
another domain directly. Specifically, in [21], a method
was proposed to learn rotation matrices to match source
data distributions to that of the target domain in an un-
surprised manner. Dai et al. [8] proposed to learn a fea-
ture mapping by construct some feature correspondences
between domains based on translators. However, in gen-
eral, such translators for feature correspondences are not
available or difficult to be constructed in real-world appli-
cations. Kulis et al. [22] proposed an Asymmetric Reg-
ularized Cross-domain transformation (ARC-t) method to
learn an asymmetric transformation across domains based
on metric learning. Similar to DAMA, ARC-t also utilizes
the label information to construct the similarity and dissim-
ilarity constraints between instances from the source and
target domains respectively. However, the computational
complexities of ARC-t and its kernelized version depend
quadratically on the feature dimensions and the data size
respectively, which are difficult to be scaled up.

3 Multi-class HDA via Sparse Mapping

In this paper, we study a heterogeneous domain adaptation
problem with one source domain and one target domain

in a multi-class setting. Specifically, let {(xSi , ySi)}
nS
i=1

denote a set of labeled training instances of the source
domain, where xSi ∈ RdS denotes the i-th instance and
ySi ∈ {1, 2, · · · , c} denotes the corresponding label. Sim-
ilarly, let {(xTi , yTi)}

nT
i=1 be a set of labeled training in-

stances of the target domain, where nT ≪ nS , xTi ∈ RdT

and yTi ∈ {1, 2, · · · , c}. Since there are sufficient labeled
data in the source domain, one can build a set of robust pre-
dictors {wt

S}
nc
t=1 regarding specific binary learning tasks

{t}’s decomposed from the multi-class classification prob-
lem. Similarly, one can also build the corresponding pre-
dictors {wt

T }
nc
t=1 with limited target labeled data. Given

a binary task t ∈ {1, 2, · · · , nc}, we assume that the pre-
dictive classifier for either the source or target domain is
linear, which can be written as f t(x) = wt⊤x, where wt

is the weight vector of the t-th classifier.

3.1 Problem Formulation

Recall that, in HDA problems, the feature dimensions of
the source and target domains are not equal, i.e., dS ̸= dT .
To make the learning of heterogeneous domains possible,
in ARC-t [22, 27], a transformation matrix G ∈ RdT×dS

is introduced to learn the similarity x⊤
Ti
GxSi between a

source domain instance xSi ∈ RdS and a target domain
instance xTi ∈ RdT . Essentially, data points can be trans-
formed from the source feature space to the target one via
xTi = GxSi . Equivalently, we can map the target domain
data into the source domain via G⊤ [27].

Instead of learning the transformation using metric learn-
ing, we borrow an idea from a multi-task learning
method [1], and propose to learn the feature mapping
across heterogeneous features based on the source and tar-
get predictive structures, i.e., {wt

S}’s and {wt
T }’s. There-

fore, we can either learn the transformation G ∈ RdT×dS

by maximizing the dependency between the transformed
weight vectors of source classifiers and the weight vectors
of target classifiers as follows,

max
G

wt⊤
T Gwt

S ,

or alternatively by minimizing the distance between the two
weight vectors as

min
G

∥wt
T −Gwt

S∥.

For simplicity in theoretical analysis, we adopt the lat-
ter approach to learn G. Specifically, given a binary task
t ∈ {1, · · · , nc} and a transformation G ∈ RdT×dS , the
relationship between the weight vectors of the source and
target classifiers can be modeled as

wt
T −Gwt

S = wt
∆, (1)

where wt
∆ is referred to as a “delta” weight vector, and it-

s ℓ2-norm ∥wt
∆∥2 can be used to measure the difference
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between the source weight vector wt
T and the transformed

target weight vector Gwt
S . Our motivation is that in or-

der to use the robust weight vector wt
S to make predictions

on the target domain data, one should minimize the differ-
ence between domains after transformation. In this sense,
we propose to learn the transformation G by minimizing
∥wt

∆∥2. Moreover, as mentioned in Section 1, the fea-
ture mapping G should be sparse and class-invariant. Fi-
nally, like the multi-language text classification problem
mentioned in Figure 1, in most real-world applications,
the transformation between two domains should be non-
negative. Therefore, we propose to jointly optimize G over
all the binary tasks by imposing non-negative sparsity con-
straints on G. Specifically, let G = [g1,g2, · · · ,gdT ]

⊤,
by imposing ℓ1-regularization on gi and non-negative con-
straints gi ≽ 0, the problem of learning G can be formulat-
ed as the following nonnegative LASSO problem [33, 30]:

min
G

1

nc

nc∑
t=1

∥wt
T −Gwt

S∥22 +
dT∑
i

λi∥gi∥1, (2)

s.t. gi ≽ 0,

where λi > 0 is the regularization parameter, and the non-
negativity constraints are to preserve nonnegative correla-
tion of the source and target weight vectors [3, 12]. The
first term of the objective is to minimize the difference be-
tween wt

T and Gwt
S over all the nc tasks, and the second

term is a ℓ1-regularization term on {gi}’s to enforce sparsi-
ty on each row of G respectively. Notice that once the set of
source classifiers in terms of the weight vectors {wt

S}
nc
t=1

are learned offline, one can learn G directly without reusing
the source domain data, which can significantly reduce the
learning complexity. Our learning strategy is typically dif-
ferent from most of the existing methods which require the
source domain data to be available for learning the feature
mapping across domains.

Finally, after learning the sparse transformation G, for any
unseen test data x∗

T from the target domain, we can reuse
the source domain classifiers to predict its label by

y∗T = F
(
{(Gwt

S)
⊤x∗

T }
nc

k=1

)
,

where F (·) is a decision function that combines the predic-
tive results of all the nc source classifiers to make a final
prediction.

3.2 Error Bound of Reconstruction

Before presenting a solution to solve the proposed opti-
mization (2), we first analyze the error bound of the re-
construction of G in (2), which will be used to guide our
algorithm design. It can be shown that the objective of (2)
can be rewritten as the following equivalent form,

min
gi≽0

1

nc

nc∑
t=1

dT∑
i=1

(wt
Ti

−wt⊤
S gi)

2 +

dT∑
i

λi∥gi∥1,

where wt
Ti

is the i-th element of the vector wt
T . If we

exchange the summation sequences of the first term, the
above formulation can be further rewritten as follows,

min
gi≽0

dT∑
i

(
1

nc
∥bi −Dgi∥22 + λi∥gi∥1

)
,

where bi is the concatenated row vector containing wt
Ti

for
all the nc tasks, and D = [wt

1 wt
2 · · · wt

nc
]⊤ ∈ Rnc×dS .

Note that (3) contains dT nonnegative LASSO problem-
s. In general, we have nc < dS for relatively high-
dimensional problems. Therefore, it is an underdetermined
linear system [13]. However, if gi is sparse, as suggested
by the compressive sensing theory, it can be possibly re-
covered if the measurements are sufficient and the matrix
D satisfies some restricted conditions [13, 6, 34].

For convenience in presentation, let ki denote the sparsity
of gi and ĝi be the estimator of gi. According to Theo-
rem 4 in [34], under some restricted conditions, the esti-
mation error ∥gi − ĝi∥2 for each independent subproblem

can be bounded by O(
√

ki log dS

nc
), where dS denotes the

dimensions of the source domain, and nc is the number of
tasks. Therefore, the estimation error of G in (2) is bound-

ed by O(dT

√
ki log dS

nc
). According to this bound, we can

observe that if more binary classification tasks are gener-
ated (i.e., nc is large), and the sparsity of each row vector
gi is high (i.e., ki is small), the estimation error bound will
become relatively small. Note that, the above bound holds
under some restricted conditions, such as the sparse Riesz
condition or RIP condition [34, 6]. More specifically, the
sparse Riesz condition requires that any two columns of D
should be as perfectly incoherent as possible [13, 6].1 In
the following sections, we will concentrate on building an
incoherent D for the transformation learning.

3.3 Many Binary Classification Tasks Construction

As discussed in Section 3.2, to reduce the reconstruction
error, we need to 1) build as more classifiers as possi-
ble to increase the number of measurements, and 2) con-
struct incoherent classifiers to generate an incoherent D.
For multi-class classification problems with a set of class-
es {1, 2, · · · , c}, one can generate c binary classifiers using
the one-vs-all strategy [11]. However, this strategy fails to
generate sufficient number of classifiers if the number of
classes is relatively small. Alternatively, one can also use
the one-vs-one strategy to generate c(c−1)/2 binary classi-
fication tasks. However, the generated classifiers may have
large redundancy, e.g. some classifiers are highly correlat-
ed with others.

To address the above issues, we propose to use the Er-
ror Correcting Output Codes (ECOC) scheme to generate

1More details of the exact recovery conditions can be found in
the cited reference papers.
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sufficient binary classifiers [11]. Basically, ECOC aim-
s to construct correspondences between classes and code-
words by designing a “code book” generate a number of
binary classifiers for multi-class classification problems.
Generally speaking, ECOC consist of two steps: encod-
ing and decoding. In the encoding step, one can construct a
both row-well-separated and column-well-separated “code
book” [10, 16]. In other words, the classifiers generated
under the ECOC scheme are incoherent. After the “code
book” is constructed, one can use some decoding tech-
niques to assign labels to the corresponding codes for pre-
dictions. In this paper, we use the sparse random design
coding and loss-based decoding techniques [11].

3.4 Robust Transformation Learning with ECOC

The robustness of ECOC is another important motivation to
use ECOC in our method. Recall that, the error-correcting
codes can be viewed as a compact form of voting, and a
certain number of incorrect votes can be corrected through
the corrected votes [11]. Specifically, given a total of T
classifiers, the voting-based methods guarantee to make a
correct decision as long as there is ⌊T

2 + 1⌋ correct classi-
fiers [9], where ⌊ ⌋ denotes the round-up operator. In other
words, even though there are part of misclassified tasks due
to the incorrect base classifiers, we can still achieve good
performances by using the ECOC scheme. This property
is particularly important for the proposed multi-class HDA
method since some of the learned binary classifiers in the
target domain may not be accurate or correct, which may be
due to the poor learning, limited training data or bad feature
representations. Fortunately, it has been shown that though
the bit errors are unavoidable in real applications, using the
error-correcting codes can still make correct decisions with
enough correct learners [20]. Accordingly, with the help of
ECOC, SHFR can still learn a robust transformation matrix
G even with some incorrect target binary classifiers. The
robustness of SHFR with ECOC will be further verified in
experiments, where we demonstrate that even with inaccu-
rate target classifiers, the obtained class-invariant G based
on ECOC can greatly enhance the prediction accuracy for
each binary classification task.

3.5 Complexity Comparison

In this paper, we use linear SVMs [17] to build the base
classifiers for the source and target domains, which can be
pre-trained offline. In other words, the learning of G is
independent to the number of source domain training in-
stances. It can be shown that the computational cost of
our method SHFR is O(dTncdS), which is cost by solv-
ing the nonnegative LASSO problem 2. Compared to
state-of-the-art HDA algorithms, our proposed method is
much more efficient. The ARC-t method requires to solve
an optimization problem that contains nSnT constraints
by applying an alternating projection method (i.g., Breg-

man’s algorithm [7]). The HFA method adopts an alter-
nating projection method as well to solve a SDP prob-
lem, where the transformation matrix to be learned is in
R(nS+nT )×(nS+nT ), resulting in time complexity bounded
by O(nS + nT )

3. Therefore, ARC-t and HFA perform in-
efficiently when the data size is large. Differently, DAMA
first constructs a series of combinatorial Laplacian matrices
in R(dS+dT )×(dS+dT ) and then solve a generalized eigen-
value decomposition problem of time complexity bounded
by O(dS + dT )

3. Therefore, DAMA is very computational
expensive when the data dimensionality is high.

4 Experiments

In experiments, we use linear SVMs as base classifiers
whose regularization parameter C is set to 1 for all com-
parison methods. Furthermore, for ARC-t and HFA, which
require the use of kernel functions to measure data similari-
ties, we use the RBF kernel for learning the transformation.
For parameter tuning, cross-validation is not applicable in
HDA problems due to the small size of labeled data in the
target domain, which is still an open research issue in HDA.
Therefore, we tune parameters of the comparison methods
on a predefined range and report their best results, respec-
tively. For SHFR, we generate the ECOC “code-book” ma-
trix using sparse random matrix [11].

4.1 Experiments on Toy Dataset

In this section, we first compare the performance of dif-
ferent HDA methods in terms of recovering a ground-truth
feature mapping G on a 20-class toy dataset. To generate
the toy dataset, we first randomly generate 150 instances of
150 features for each class from different Gaussian distri-
butions to form a source domain XS ∈ R150×3,000. After
that, we construct the ground-truth sparse feature mapping
G ∈ R100×150 by using the following method: for each
row i, we set Gij = 1/5, where j = i, i+1, · · · , i+5, and
Gij = 0 otherwise. This generation of G implies that each
target domain feature is represented by 5 source domain
features. The ground-truth feature mapping is displayed in
Figure 2(a), where the dark area represents the zero entries
and the bright area denote nonzero values of G. Finally,
we construct the target domain data XT ∈ R100×3,000 by
using XT = GXS . When conducting the experiment, we
randomly select 5 instances per class from the target do-
main data XT as labeled training data, and apply different
HDA methods on them together with all the 3,000 source
domain labeled data to recover the feature mapping G.

In this experiment, the HDA methods DAMA and ARC-
t are adopted as the baselines. For ease in comparison,
we present the recovered matrix G for the three method-
s in Figures 2(b)-2(d), respectively. From Figure 2(b), we
can observe that DAMA fails to recover the structure of G;
while ARC-t shows relatively better performance. Howev-
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er, the recovered G’s by these two methods are not sparse.
On the contrary, according to Figure 2(d), the proposed
method SHFR can perfectly recover G with little noise.
These experimental results demonstrate that by considering
the sparsity constraints, the proposed method SHFR can re-
cover the feature mapping G more precisely.

(a) Ground Truth (b) DAMA

(c) ARC-t (d) SHFR

Figure 2: Illustrations of recovered feature mappings by
different methods on the toy dataset. Pixels in black color
represent 0, and those in white color represent 1.

4.2 Experiments on Real-world Datasets

In this section, we conduct experiments on three real-world
datasets: Multilingual Reuters Collection, BBC Collection,
and Cross-lingual Sentiment Dataset, to verify the effec-
tiveness and efficiency of SHFR. The reported results are
averaged over 10 independent data-split procedures.

4.2.1 Datasets and Experimental Settings

Multilingual Reuters Collection2 is a text dataset with
over 11,000 news articles from 6 categories in 5 languages
(i.e., English, French, German, Italian and Spanish), which
are represented by a bag-of-words weighted by TF-IDF.
Following the setting in [15], we use Spanish as the tar-
get domain and the other four languages as source domain-
s. For each class, we randomly select 100 instances from
the source domain and 10 instances from the target domain
for training. Furthermore, we randomly select 10,000 in-
stances from the target domain as the test data. Note that
the original data is in very high dimensions, and the base-
line methods cannot handle such high-dimensional fea-
tures. To conduct the comparison, we perform PCA with
60% energy preserved on the TF-IDF features. After PCA,
we obtain 1,131 for English documents, 1,230 features for

2http://multilingreuters.iit.nrc.ca/
ReutersMultiLingualMultiView.htm

French documents, 1,417 features for German documents,
1,041 features for Italian documents, and 807 features for
Spanish documents. In contrast to the baseline methods,
we use original features for our proposed method SHFR
since it can efficiently handle high-dimensional data.

BBC Collection3 was collected for multi-view learning
where each instance is represented by three views. These
views were constructed from a single-view BBC corpo-
ra by splitting news article into related “views” of tex-
t. We consider View 3 as the target domain, and View 1
and View 2 as source domains respectively. Similar to the
pre-processing on the Reuters dataset, we perform PCA on
the original data to reduce dimensions for other baselines.
Consequently, the reduced dimensions for View 1, View 2
and View 3 are 203, 205 and 418, respectively. We ran-
domly select 70% source domain instances, and 10 target
domain instances for each class for training. The remaining
target domain instances are used for testing.

Cross-lingual Sentiment Dataset4 consists of Amazon
product reviews of three product categories: books, DVD-
s and music. These reviews are written in four languages:
English, German, French, and Japanese. We treat English
reviews as the source domain data and the other language
reviews as the target domain data respectively. After PCA,
the reviews are of 715, 929, 964, 874 features for English,
German, French and Japanese, respectively. We randomly
select 1,500 source domain instances and 10 target domain
instances per class for training, and use the remaining 5,970
target domain instances for testing.

4.2.2 Overall Performance Comparison

Comparison results between SHFR and other baselines on
the three real-world datasets are reported in Tables 1-3 re-
spectively. From the tables, we can observe that the SVMs
conducted on a small number of target domain data only,
denoted by SVM-T, using either one-vs-one or one-vs-all
strategy performs the worst on average. Moreover, the re-
sults of SVM-T using one-vs-one and one-vs-all, respec-
tively, are not consistent. For instance, on the BCC dataset
in Table 2, SVM-T using the one-vs-all strategy performs
much better than that using the one-vs-one strategy, while
on the sentiment dataset in Table 3, SVM-T using the one-
vs-one strategy performs much better than that using one-
vs-all strategy. The reason is that the size of labeled train-
ing data is too limited to train a precise and stable classifi-
er in the target domain. The testing accuracy of the HDA
baseline methods, DAMA, ARC-t and HFA, are compara-
ble on the three datasets except for the BCC dataset. On the
BCC dataset, DAMA performs much worse than the oth-
er two. This may be because the performance of DAMA

3http://mlg.ucd.ie/datasets/segment.html
4http://www.uni-weimar.de/cms/medien/webis/

research/corpora/corpus-webis-cls-10.html
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Table 1: Multilingual Reuters Collection: comparison results in terms of classification accuracy (%).
Source Domain SVM-T(1vsR) SVM-T(1vs1) DAMA ARC-t HFA SHFR(1vs1) SHFR(ECOC)

English

64.40±4.45 64.94±8.10

63.42±2.62 65.56±2.48 66.78±1.56 69.45±1.56 72.79±1.10
French 64.32±1.86 65.30±1.83 67.09±1.63 70.51±1.32 73.82±1.12
German 66.56±2.34 67.45±1.65 68.42±1.74 71.23±1.76 74.15±1.14
Italian 67.48±2.17 66.41±2.18 68.19±2.51 70.75±1.54 73.35±1.31

Table 2: BBC Collection: comparison results in terms of classification accuracy (%).
Source Domain SVM-T(1vsR) SVM-T(1vs1) DAMA ARC-t HFA SHFR(1vs1) SHFR(ECOC)

View 1 73.35±4.98 66.69±12.61 67.42±2.25 75.93±2.54 71.72±11.11 89.81±1.20 90.45±1.00
View 2 66.35±1.76 74.23±2.12 72.24±8.14 88.56±1.02 91.82±0.84

Table 3: Cross-lingual Sentiment Dataset: comparison results in terms of classification acc. (%).
Target Domain SVM-T(1vsR) SVM-T(1vs1) DAMA ARC-t HFA SHFR(1vs1) SHFR(ECOC)

French 47.23±3.89 58.14±4.44 52.12±3.67 50.01±5.2 55.16±3.71 60.12±3.56 62.09±2.15
German 48.54±4.95 60.06±5.28 54.51±3.64 55.30±2.83 54.84±3.63 63.20±2.74 65.22±2.03
Japanese 47.10±6.21 54.87±4.81 52.12±2.45 54.45±3.65 53.42±4.74 59.40±3.71 62.05±3.16

is sensitive to the intrinsic manifold structure of the data.
If the manifold assumption does not hold on the data, the
testing accuracy of DAMA drops a lot. On the contrary,
our proposed method SHFR using either the one-vs-one or
ECOC scheme performs the best on these three datasets.
Moreover, using the ECOC scheme, SHFR can further im-
prove the performance in terms of classification accuracy.
As discussed in Section 3.2, this is because that with more
constructed binary tasks, the recovered feature mapping G
tends to be more accurate.

4.3 Impact of the Number of Binary Classifiers on
Estimation Error

As discussed in Section 3.2, estimation error of G depends
on two factors: the number of classifiers (measurements)
and the sparsity of G. When G is sparse and the constructed
binary classifiers are sufficient, one can possibly recover a
precise G by using the dictionary constructed by wS .

To analyze the error estimation bound w.r.t. the number of
binary classifiers of our proposed SHFR, we conduct an ex-
periment on the Reuters dataset. Experimental results are
showed in Figure 3(a). From the figure, we can observe
that the more binary classifiers are constructed, the higher
accuracy of the predictions can be achieved in the target do-
main. This verifies that more classifiers can provide more
discriminative information to recover the feature mapping
G. Furthermore, the standard deviation of testing accuracy
is also decreasing with the increasing number of classifiers.

In general, SHFR can obtain better and more stable per-
formance in terms of classification accuracy with increas-
ing number of binary classifiers. However, as observed
from the figure, the multi-class accuracy does not further
increase any more when the number of classifiers reaches
31. This may be caused by two reasons: 1) The redundancy

among the increasingly constructed binary classifiers may
hinder the estimation of G from being more accurate. 2)
According to [19], when there are too many binary clas-
sifiers, the minimum distances in ECOC becomes small,
which may decrease the ability of correcting errors.

4.4 Impact of Target Domain Training Size

In this experiment, we verify the impact of the labeled
training sample size of the target domain to the overall H-
DA performance in terms of classification accuracy. We
vary the number of target domain training instances from 5
to 20. Here, we only report the results of the Reuter dataset,
where we use English as the source domain and Spanish as
the target domain. The experimental results are reported in
Figure 3(b). From the figure, we can observe that SHFR
consistently outperforms the baseline methods under dif-
ferent numbers of labeled training instance in the target
domain. Particularly, when the size of the target domain
labeled data is smaller than 10, SHFR shows significantly
better performance than the baseline methods.

4.5 Error Corrections Through Learning G

The weight vectors of the binary classifiers constructed in
the target domain (i.e., wT ’s) may be very unreliable due
to the lack of target labeled data, which may affect the es-
timation of G. To verify how SHFR can correct bias com-
mitted by some binary classifiers, we conduct experiments
to show the comparison results between SVM-T and SHFR
in term of classification accuracy on each binary task on the
Reuters dataset in Table 4, where each column corresponds
to a binary task, indexed by k ∈ {1, · · · , 15}.

From the table, we can observe that the predictions of
SVM-T on some binary tasks are inaccurate due to limited
labeled data, whose accuracies are even below 50% (num-
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Figure 3: Comparison results of SHFR in different settings on the Reuters dataset.

Table 4: Comparison results of binary Classifiers in terms of classification accuracy (%).
Binary Classifiers 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

SVM-T 74.42 67.98 85.67 82.53 43.32 75.95 66.30 73.92 42.78 76.56 78.32 65.43 72.74 46.56 49.71
SHFR 65.39 84.81 82.45 94.28 80.76 76.75 79.74 84.63 84.45 70.07 90.35 81.35 83.97 80.75 86.43

Difference -9.03 16.82 -3.22 11.75 37.44 0.80 13.44 10.70 41.67 -6.49 12.03 15.92 11.23 34.20 36.72

bers in boldface). However, through learning the transfor-
mation G, we are able to reduce the bias of the weak binary
classifiers, and increase over 30% in accuracy on average.
Other experiments on the other two datasets also exhibit
similar results, e.g., for each binary task, the performance
of classifiers obtained through G is increased by 26.53%
on the BBC dataset and 3.01% on the Sentiment dataset on
average, respectively, compared to those based on SVM-T.

This experiment also verifies why SHFR outperforms
ARC-t in the experiments shown in Tables 1-3 and Fig-
ure 3(b). ARC-t aims to align the target data with source
data via a transformation G which is learned from some
similarity and dissimilarity constraints. These constraints
are constructed from plenty of source-domain labeled data
and only a few target-domain labeled data. In other words,
if those limited target-domain labeled data are noisy, the es-
timation in ARC-t may fail. Different from ARC-t, SHFR
tries to align the target classifiers with source classifiers
through a transformation G, which is shared by all induced
binary tasks or classifiers. In other words, G is estimated
through all classifiers. Inspired by multi-task feature learn-
ing which jointly optimizes all classifiers to learn a robust
global feature transformation G, SHFR can still estimate a
stable and precise G for HDA. Furthermore, as discussed
in Section 3.4, ECOC with a proper design of a coding ma-
trix has the ability to rectify errors committed by individual
binary classifiers as shown in Table 4. In summary, SHFR
takes an advantages of multi-class information and reduces
the bias caused by the limited training instances in the tar-
get domain, resulting in robust and better prediction perfor-
mance in multi-class HDA.

5 Conclusion and Future Work

In this paper, by exploiting the sparsity and class-invariance
in learning a feature mapping, we propose a novel method,
namely SHFR, for multi-class HDA problems. In the pro-
posed method, the learning of feature mapping can be cast
as a compressive sensing (CS) problem. Based on the CS
theory, we show that how the number of constructed binary
learning tasks can affect the multi-class HDA performance.
In addition, by exploring the sparsity, the proposed method
has superior scalability over other methods. Extensive ex-
periments demonstrate the effectiveness, efficiency and sta-
bility of SHFR in multi-class HDA. In future work, we plan
to study more theoretical analysis of SHFR.
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